- Weil scheme
- Weil scheme Weil-Verfahren n (Schalterprüfschaltung)
English-German dictionary of Electrical Engineering and Electronics. 2013.
English-German dictionary of Electrical Engineering and Electronics. 2013.
WEIL, ERIC — (1904–1977), German philosopher. Born in Hamburg, he worked for his doctorate under ernst cassirer . In 1933 Weil immigrated to France and in 1945 was appointed Maître de Recherche at the Centre National de la Recherche Scientifique and professor … Encyclopedia of Judaism
Scheme (mathematics) — In mathematics, a scheme is an important concept connecting the fields of algebraic geometry, commutative algebra and number theory. Schemes were introduced by Alexander Grothendieck so as to broaden the notion of algebraic variety; some consider … Wikipedia
Glossary of scheme theory — This is a glossary of scheme theory. For an introduction to the theory of schemes in algebraic geometry, see affine scheme, projective space, sheaf and scheme. The concern here is to list the fundamental technical definitions and properties of… … Wikipedia
Boneh/Franklin scheme — The Boneh/Franklin scheme is an Identity based encryption system proposed by Dan Boneh and Matthew K. Franklin in 2001 [Dan Boneh, Matthew K. Franklin, Identity Based Encryption from the Weil Pairing Advances in Cryptology Proceedings of CRYPTO… … Wikipedia
André Weil — Infobox Scientist name = André Weil image width = caption = birth date = birth date|1906|5|6 birth place = Nantes death date = death date and age|1998|8|6|1906|5|6 death place = field = Mathematics work institutions = Lehigh University… … Wikipedia
mathematics — /math euh mat iks/, n. 1. (used with a sing. v.) the systematic treatment of magnitude, relationships between figures and forms, and relations between quantities expressed symbolically. 2. (used with a sing. or pl. v.) mathematical procedures,… … Universalium
Étale cohomology — In mathematics, the étale cohomology groups of an algebraic variety or scheme are algebraic analogues of the usual cohomology groups with finite coefficients of a topological space, introduced by Grothendieck in order to prove the Weil… … Wikipedia
Elliptic curve cryptography — (ECC) is an approach to public key cryptography based on the algebraic structure of elliptic curves over finite fields. The use of elliptic curves in cryptography was suggested independently by Neal Koblitz[1] and Victor S. Miller[2] in 1985.… … Wikipedia
Grothendieck topology — In category theory, a branch of mathematics, a Grothendieck topology is a structure on a category C which makes the objects of C act like the open sets of a topological space. A category together with a choice of Grothendieck topology is called a … Wikipedia
Glossary of arithmetic and Diophantine geometry — This is a glossary of arithmetic and Diophantine geometry in mathematics, areas growing out of the traditional study of Diophantine equations to encompass large parts of number theory and algebraic geometry. Much of the theory is in the form of… … Wikipedia
Abelian variety — In mathematics, particularly in algebraic geometry, complex analysis and number theory, an Abelian variety is a projective algebraic variety that is at the same time an algebraic group, i.e., has a group law that can be defined by regular… … Wikipedia